$$\frac{\text{Zur Kenntnis der RbNiCrF}_{6} - \text{Familie [1,2,3]:}}{\text{NEUE FLUORIDE A^{I}M^{III}M^{III}F_{6}} (A^{I} = \text{Cs,Rb; M}^{II} = \text{Mg,Ni,Cu,Zn;}}$$
und M^{III} = Al,V,Fe,Co,Ni)

T.FLEISCHER und R.HOPPE

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, D 63 Gießen (B.R.D.)

Inhaltsübersicht. Neu dargestellt wurden die kubischen Verbindungen CsNiCoF₆ (a = 10, 27, Å, braun), $CsMgNiF_{c}$ (a = 10, 12, Å, dunkelbraun), $RbMgNiF_{c}$ (a = 9,97, Å, dunkelbraun), $RbMgCoF_6$ (a = 10, 18₅ Å, hellblau), $RbZnCoF_6$ $(a = 10, 20, A, hellblau), RbNiCoF_{c} (a = 10, 18, A, braun)$ und RbCuFeF₆ [4](a = 10,21₆ Å, farblos), alle RbNiCrF₆-Typ; RbCuAlF_c[4](a = 6,86, \hat{A} , b = 7,07, \hat{A} , c = 9,98, \hat{A} , farblos), $RbCuVF_6$ (a = 6,88₃ Å, b = 7,45₉ Å, c = 10,15₇ Å, olivgrün), $CsCuAlF_{c}[4](a = 7,09, A, b = 7,13, A, c = 10,24, A, farblos)$ und $CsZnAlF_{6}[4](a = 7,21, A, b = 7,07, A, c = 10,13, A, c = 10,13, A, b = 7,07, A, c = 10,13, A$ farblo's) kristallisieren orthorhombisch und sind isotyp mit CsAgFeF₆ [10], R.G.:Pnma, Nr. 62. In einer Ordnungsvarianten dieses Typs kristallisieren CsNiNiF₆ (a = 7,12, $^{\circ}$, b = 7,35₀ $^{\circ}$, $c = 10,02_5$ Å, braunschwarz) und RbNiNiF₆ (a = 6,94₆ Å, b = 7,33, Å, c = 9,76, Å, braunschwarz), für die aus Pulverdaten ein Strukturmodell (R.G.: Imma) abgeleitet wird. Der Madelunganteil der Gitterenergie, MAPLE, wird berechnet und diskutiert.

Die zuerst von Babel aufgeklärte Struktur des RbNiCrF₆-Typs [3] wurde bei einer großen Zahl entsprechend zusammengesetzter Fluoride der Metalle gefunden.

So haben wir Fluoride des Typs $CsBMF_6$ mit $B = Mn^{II}$ bzw. Ni^{II} und M = Ga, Fe, Rh bzw. Sc, In, Tl and Rh [5], $CsZnMF_6$ mit M = Ga, In, Tl, Sc, Ti, V, Mn, Fe, Co, Ni, Cu [6,7], $CsCuMF_6$ mit M = Sc, Ti, Mn, Co, Ni, Rh, In, Tl [4,7], $CsMgMF_6$ mit M = Co, Fe, Ga [7], sowie $CsPdMF_6$ mit M= Sc, Fe, Rh, In [8] dargestellt, die alle kubisch im RbNiCrF₆-Typ kristallisieren.

Uberraschend kristallisieren Verbindungen $CsPdMF_6$ mit M = Al, Ga, Mo [8], $CsZnAlF_6$ [6], aber auch $RbCuMF_6$ mit M = Al, Ga, In, Tl, Sc [4], sowie $KCuMF_6$ mit M = Al, Ga, In, Tl, Sc, Fe [4] offensichtlich nicht kubisch.

Untersuchungen an Fluoriden $A^{I}AgMF_{6}$ [9] zeigten, daß nur solche mit A^{I} = Cs und M = Sc, In, Tl zum RbNiCrF₆-Typ gehören, dagegen Fluoride mit M = Al, Ga, Fe und A^{I} = Cs, Rb orthorhombisch in einer mit dem RbNiCrF₆-Typ verwandten Struktur (R.G.: Pnma) kristallisieren [10]. Ebenfalls orthorhombisch, jedoch nicht isotyp zu den Fluoriden mit zweiwertigem Silber sind nach Pulverdaten CsFeFeF₆ und RbFeFeF₆ [11]. Diese Ergebnisse warfen drei Fragen auf:

1.) Gibt es weitere Fluoride des $RbNiCrF_6$ -Typs, bei denen aus chemischen Gründen Schwierigkeiten bei der Darstellung auftreten? Z.B. wird NiF_2 in Gegenwart von AF ($A^{I} = Cs, Rb, K$) im F_2 -Strom leicht zu $A_2^{I}Ni^{IV}F_6$ oxydiert; die Darstellung von noch unbekanntem $CsMgNi^{III}F_6$ und $RbMgNi^{III}F_6$ ist daher sicher nicht einfach. Auch CoF₃ reagiert mit CsF unter F_2 zu Cs_2CoF_6 ! Beim Tempern in geschlossenen Goldbomben erfolgt dagegen leicht thermischer Abbau von CoF_3 zu CoF_2 . Auch hier sind daher Schwierigkeiten zu erwarten, will man z.B. RbMgCoF₆ darstellen.

- 2.) Sind die nichtkubischen Verbindungen $ACuMF_6$ vielleicht isotyp zu den entsprechenden Silberverbindungen oder schließen sie sich der für $CsFeFeF_6$ [11] gefundenen ebenfalls orthorhombischen Variante an. Warum gehört insbesondere $CsZnAlF_6$, wo alle Metallteilchen eine abgeschlossene Elektronenkonfiguration besitzen, nicht zum kubischen 'Muttertyp'?
- 3.) Schließlich reizte der Versuch, weitere Fluoride vom Typ des CsFeFeF₆ [11] darzustellen, bei denen als M^{II} und M^{III} das gleiche Metall fungiert.

I. Darstellung der Proben

Die Darstellung der Proben, vgl. Tab. 1, erfolgte auf drei verschiedenen Wegen :

- a.) Durch übliche Fluorierung geeigneter Gemenge der Komponeneten mit verdünntem F_2 (N_2 : $F_2 \cong 5$: 1) bei erhöhter Temperatur;
- b.) Durch Tempern analoger Gemenge der binären Fluoride in zugeschweißten Goldrohren bei Temperaturen zwischen 450°C und 650°C;
- c.) Durch Erhitzen der Gemenge der Ausgangsstoffe zunächst im verdünnten F₂-Strom und anschließendes Tempern im Monel-Autoklaven unter erhöhtem Druck. Dabei ist wichtig, darauf zu achten, daß bei der 'Anfluorierung' möglichst röntgenamorphe Proben entstehen.

Tab.	1	:
------	---	---

532

Darstellung der Proben, Flubranalysen, Dichtebestimmung

Verbindung	Versuchsführung	F _{ber} (≮)	F _{gef} (ह)	d _{pyk} (g cm ⁻³)	d _{rö} (g cr ⁻³)
RbMgCof	Fluorierung von RtCl, MgF ₂ und [Co(NH ₃) ₆]Cl ₃ (506 ^o C, 20h)	40,31	40,2	3,53	3,54
RtZnCoF ₆	Fluorierung von RbCl, ZnF_2 und $[Co(NH_3)_6]Cl_3$ (450°C, 12h)	35,20	35,1	4,00	4,04
RbNiCoF6	Fluorierung von RbCl, $[Ni(NH_3)_6]$ Cl ₂ und $[Co(NH_3)_6]Cl_3(450°C,3d)$	35,54	35,4	3,96	3,99
CsNiCoF ₆	Fluorierung ván CsCl, $[Ni(NH_3)_6]$ Cl ₂ und $[Co(NH_3)_6]Cl_3(450°C,3d)$	31,27	30,9	4,42	4,46
CsMgNiF ₆	'Anfluorieren' von CsCl, MgF ₂ , [Ni(NH ₃) ₆]Cl ₂ (300°C, p _F =50bar, td)	34,55	34,3	4,20	4,23
RtMgNiF ₆	'Anfluorieren von HbCl, MgF ₂ und [Ni(NH ₃) ₆]Cl ₂ (300 [°] C, p_{F_2} =50bar,1d)	40,35	39,8	3,69	3,77
RbCuFeF ₆	Umsetzung von RbF, CuF_2 und FeF ₃ in Goldbomben (600°C,4d)	35,75	35,9	3,95	3,97
CsNiNiF ₆	Fluorierung von CsCl und [Ni(NH ₃) ₆]Cl ₂ (450 ⁰ C,15h)	31,29	31,1	4,55	4,61
RENINIF ₆	Fluorierung von RbCl und [Ni(NH ₃) ₆]Cl ₂ (450°C,15h)	36,00	36,6	-	4,23
RbCuVF ₆	Umsetung von RbF, CuF ₂ und VF ₃ in Goldbomben(550 ⁰ C,4d)	36,31	36,2	3,98	4,00
RbCuAlF ₆	Fluorierung von RbCuCl ₃ und AlF ₃ (560°C,3d)	39,31	39,6	3,94	3,97
CsCuAlF ₆	Fluorierung von CsCuCl ₃ und AlF ₃ (560 ⁰ C,3d)	33,78	33,5	4,28	4,32
CsZnAlF ₆	Umsetzung von CsF, ZnF ₂ und AlF ₃ in Goldtomben (550 ⁰ C,3d)	33,60	33,6	4,34	4,35

Ausgangsmaterial

CsF: dargestellt durch Fluorierung von CsCl (p.a.Merck) RbF: dargestellt durch Fluorierung von RbCl (p.a.Merck) [Co(NH₃)₆]Cl₃: aus p.a. Reagenzien Merck, selbst dargestellt.

[Ni(NH₃)₆]Cl₂: aus p.a. Reagenzien Merck, selbst dargestellt.

- zu a) Zur Darstellung von z.B. $RbMgCoF_6$ wurden 1,2092 g RbCl, 0,6231 g MgF₂ und 1,8232 g $[Co(NH_3)_6]Cl_3$ eingewogen (Rb:Mg:Co=1:1:1), innig im Achatmörser verrieben und zunächst bei Raumtemperatur im verdünnten F₂-Strom anfluoriert. Es setzt lebhafte Gasentwicklung ein. Langsam wird auf 500°C gesteigert. Die Präparate werden mehrere Male auf Raumtemperatur abgekühlt, im Mörser verrieben und wieder auf 500°C erhitzt. Nach 20h ist die Reaktion beendet. Die hellblauen Proben werden unter Schutzgas in Ampullen abgefüllt.
- zu b) Zur Darstellung von z.B. CsZnAlF₆ wurden 1,5190 g CsF,
 1,0337 g ZnF₂ und 0,8398 g AlF₃ eingewogen, innig unter
 Argon vermengt, in eine Goldbombe gegeben und die Offnung
 mit einem Acetylenbrenner zugeschweißt. Das Gemenge wird in
 Intervallen von 50°C/h bis zum Erreichen der Endtemperatur
 erhitzt. Nach 3d wird die Temperatur langsam (20°C/h) auf
 Raumtemperatur gebracht, die farblosen Proben der Goldbombe
 entnommen und unter Argon in Glasampullen abgefüllt.

zu c) Zur Darstellung von z.B. CsMgNiF₆ wurden 1,6836 g CsCl, O,6231 g MgF₂ und 2,3180 g $[Ni(NH_3)_6]Cl_2$ eingewogen und bei 300°C anfluoriert. Mehrere Male werden die Proben im Achatmörser innig verrieben. Unter Argon kommen so erhaltene Präparate in einen Monel-Autoklaven (Freies Volumen: 28 ml), dazu wird 1 ml flüssiges F₂ einkondensiert. Der Autoklav wird nach Erhitzen (460°C, 1d) auf Zimmertemperatur gebracht und überschüssiges F₂ entfernt. Die Proben werden im Glasampullen abgefüllt.

II. Neue kubische Vertreter des RbNiCrF₆-Typs

Den bereits beschriebenen Fluoriden $CsZnCoF_6[7]$ (hellblau), $CsCuCoF_6[4]$ (lindgrün), $KCuCoF_6[4]$ (hellblau), $CsZnNiF_6[7]$ (braun) schließen sich, vgl. Tab.2, die Vertreter RbMCoF₆ mit M = Mg, Zn, Ni sowie $CsNiCoF_6$ und $AMgNiF_6$ mit A = Cs, Rb an. Aber auch RbCuFeF₆ gehört zum RbNiCrF₆-Typ.

a) Eigenschaften der Fluoride

Alle Proben sind farbig, vgl. Tab. 2, ausgenommen $RbCuFeF_6$. Mit Luftfeuchtigkeit erfolgt schnell Zersetzung unter Hydrolyse, am schnellsten bei CaMgNiF₆ und $RbMgNiF_6$, nur zögernd bei $RbCuFeF_6$. Auch unter Argon in Ampullen sind obige Nickelfluoride nur einige Tage stabil und zersetzen zu gelben Produkten.

b) Röntgenographische Untersuchungen

Von RbMgNiF₆ und CsMgNiF₆ wurden jeweils Guinier-Aufnahmen nach Simon [13] mit CuK^{α} -Strahlung angefertigt, von den anderen auch solche nach Guinier-de Wolff (CuK α_1 -Strahlung).

Tabelle 2.

Kubische Vertreter des RbNiCrF₆-Typs

Formel	Farbe	a [A]	MV _{quat} [cm ³]	ΣMV _{bin} [cm ³]	∆ MV [%]	xF	d(A ^T -F) [A]	d(M ^{II} /M ^{III} -F) [A]
RbMgCoF ₆	blau	10, 18 ₅	79,5	75,8	+4,7	0,310	3,21	1,90
RbZnCoF ₆	blau	10,20 ₇	80,1	76,7	+4,3	0,312	3,19	1,91
RbNiCoF ₆	braun	10,18 ₃	79,5	76,1	+4,3	0,310	3,21	1,90
CsNiCoF ₆	braun	10,27 ₁	81,6	81,9	-0,1	0,310	3,24	1,92
CsMgNiF ₆	braun	10,12 ₀	78,0	77,4 ^{a)}	+0,8	0,312	3,17	1,90
RbMgNiF ₆	braun	9,97 ₈	74,8	74,6 ^{a)}	+0,1	0,316	3,08	1,88
RbCuFeF ₆	farblos	10,21 ₆	80,3	80,2	+0,2	0,313	3,18	1,92
a) Die We	rte für '	NiF, wur	rden entsp	rechenden	Uberle	sgungen de	r Dissertati	ion

, p 0 T de H.Henkel, Gießen(1968) entnommen. **^**

Für die Intensitätsrechnung wurde Isotypie mit RbNiCrF₆ angenommen und der Strukturparameter $\mathbf{x}_{\mathbf{F}} = 0,3125$ geringfügig variiert, vgl. Tab. 2. Hiermit berechnete I_C und visuell geschätzte I_O-Werte stimmen gut überein, vgl. Tab. 3 und 4; die angegebenen Abstände sind naturgemäß nur Richtwerte.

c) Der Madelunganteil der Gitterenergie, MAPLE [14, 15, 16]

Tab. 2 zeigt, daß man mit den gewählten Parametern $\mathbf{x}_{\mathbf{F}}$ plausible Abstände erhält. Wir haben zur Kontrolle den Madelunganteil der Gitterenergie, MAPLE, berechnet und mit den MAPLE-Werten der binären Fluoride verglichen. Tab. 5 zeigt, daß gute Übereinstimmung vorliegt ($\Delta \leq 1\%$).

III. Fluoride mit Isotypie zu CsAgFeF₆ [10]

Pulveraufnahmen von RbCuVF₆, RbCuAlF₆ und CsCuAlF₆ sowie CsZnAlF₆, vgl. [4,6] konnten nicht kubisch indiziert werden. Alle anderen bekannten Verbindungen CsZnMF₆[6] und viele Fluoride ACuMF₆[4,7] kristallisieren dagegen im RbNiCrF₆-Typ. Dieser Befund veranlaßte uns, obige Verbindungen erneut darzustellen.

a) Eigenschaften der Proben

RbCuVF₆ sieht olivgrün aus, alle anderen Präparate sind dagegen farblos. Feuchte Luft zersetzt rasch; Proben von CsZnAlF₆ sind am beständigsten.

b) Röntgenographische Untersuchungen

Unsere Aufnahmen nach Guinier-de Wolff (CuK_{Q1}-Strahlung) zeigen, daß Isotypie mit dem neu aufgeklärten CsAgFeF₆-Typ[10] vorliegt, eine orthorhombische Variante des

Auswertung der Röntgenaufnahme nach Guinier-de Wolff von RbMgCoF $_6$, RbZnCoF $_6$, CuKa,-Strahlung] und CsNiCoF₆ Tabelle 3

4.2 5.3 8.6 5.2 4.8 1.3 0.7 25.8 5.3 2.2 6.3 4.0 45.00 12 12.0 5.1 Ч Ро 8 ഹ Ś I ı ŝ s 3 ω 4 67.49 179.98 61.87 16.87 224.91 224.98 241.85 89.99 106.86 151.73 151.86 247.47 286.84 3 2.7 314.80 314.97 331.84 beob. ber. CSNICOF6 sin²0.10 179.95 107.02 61.93 67.51 242.11 331.95 45.02 90.22 ı I ł 1_C 1 0.9 8.1 . 7.2 45.77 76.4 62.95 2024.4 9 6.4 3 4.0 4 4.7 9.6 2.8 3.2 - 0.7 1 0.8 оı 4 ω 4 5 251.97 251.75 320.49 320.41 17.16 68.66 91.95 108.80 108.71 154.50 154.48 182.97 183.09 228.78 228.97 245.78 246.03 291.62 291.80 337.79 337.58 ber. RbNi CoF₆ sin²0.10 beob. 45.75 62.90 68.65 17.15 1 г^С 13.2 1.1 9.1 3.1 5.3 3.3 0.8 2.1 4.8 6.7 7.1 2.7 20 27.0 0.7 10 9 6 12 m -4 m ω N s 2 153.75 182.23 227.78 17.08 45.56 290.42 62.64 68.34 91.11 318.90 335.98 108.20 250.56 244.87 ber. RbZnCoF₆ sin²0.10 17.08 45.64 62.73 68.33 91.13 108.15 10.5 153.68 6.8 227.75 244.85 2.5 250.45 290.67 318.86 336.06 12.0 182.16 beob. 0.3 4.8 6.3 4.4 29.0 7.2 10.0 5.5 2.8 1.5 го Р ŝ δ 20 ഹ ~ 5 5 ھ 4 r ω ~ 45.75 62.91 68.63 17.16 108.66 154.11 183.01 228.76 245.92 251.64 291.67 320.26 337.42 91.53 ber. RbMgCoF₆ sin²0.10³ 291.70 320.41 45.71 228.78 245.78 17.04 62.90 68.57 108.58 251.66 337.46 beob. 154.31 91.43 182.97 RbNiCoF₆ N -N ---0 ---2 0 ---m 0 0 m r r-I 5 S 3 0 r 2 m 2 4 ы 2 m 4 ŝ ഹ д m ŝ ୰ N 2 4 m 4 ဖ Q

Tabelle 4.

Auswertung der Röntgenaufnahmen nach Guinier-Simon von $\texttt{CsMgNiF}_{6}$ und <code>RbMgNiF_6 [CuKa</code>-Strahlung]

		CsMgNi	F,				RbMgNi	F,C			ł
ч Ч	Ч	sin	2 ₆ - 10 ³			ћ к 1	sin ²	6 · 10 ³			
		beob.	ber.	IO	IC		beob.	ber.	ι	IC	
2 2	0	46.37	46.35	1	12.0	111	17.88	17.88	-	0.9	ł
ۍ ۲	÷	63.68	63.73	20	25.4	220	47.59	47.67	9	6.8	
2	2	69.62	69.52	4	2.8	311	65.43	65.54	20	23.8	
4 0	0	92.70	92.69	4	3.1	222	71.46	71.50	ц	4.3	
33	-	110.04	110.08	7	6.3	4 0 0	95.43	95.34	٣	3.7	
4 2	ŝ	139.12	139.04	4	2.9	3 3 1	113.19	113.21	4.	3.4	
к К	m	156.30	156.42	Ø	7.8	333	160.79	160.88	ω	7.8	
44	0	185.27	185.39	8	8.3	440	190.66	190.68	10	10.0	
53	÷	202.63	202.77	2	1.8	620	238.38	238.34	5	4.6	
6 2	0	208.48	208.56	7	6.6	533	256.22	256.22	ß	5.1	
5 3	3	249.28	249.12	5	5.2	622	262.27	262.18	٣	1.9	
6 2	2	255.06	254.91	2	1.9	551	303.83	303.89	-	0.7	

Tab.5 .

Der Madelunganteil der Gitterenergie, MAPLE Werte in kcal/Mol RbZnCoF₆,

Teilchen		binär	quat.	Δ	Σ۵
Rb	1x	102,8	93,7	- 4,1	- 4,1
Zn ²⁺	1x	498,0	'785 ,1'	+288,1	+288,1
Co ³⁺	1x	1083,3	'786,1'	-297,2	-297,2
F (RUF)	1x	102,8	146,8	+ 44,0	+ 44,0
F (MgF ₂)	2x	143,2	146,8	+ 3,6	+ 7,2
F (CoF3)	3x	160,1	146,8	- 13,3	- 39,9
Σ		2553,6	2551,7		- 1,9
					= - 0,1%

CsNiCoF6,

Teilchen		binär	guat.	Δ	ΣΔ
Cs ⁺	1x	96,5	96,7	+ 0,2	+ 0,2
Ni ²⁺	1x	504,8	'796,3'	+281,5	+281,5
Co ³⁺	1x	1083,3	'796,3'	-297,0	-297,0
$F^{-}(CsF)$	1x	96,5	145,9	+ 49,4	+ 49,4
F ^{-(NiF} 2)	2 x	145,3	145,9	+ 0,6	+ 1,2
F (CoF3)	3x	160,1	145,9	- 14,2	- 42,6
Σ		2552,0	2544,7		- 7,3
					= - 0,3%

RbMgNiF₆

Teilchen		binär	quat.	ΔΣΔ
Rb ⁺	1x	102,8	103,1	+ 0,3 + 0,3
Mg ²⁺	1 x	508,0	'796,1'	+288,1 +288,1
Ni ³⁺	1x	'1090,1'	'796,1'	-294,0 -294,0
F ⁻ (RbF)	1 x	102,8	150.0	+ 47,2 + 47,2
$F^{-}(MgF_2)$	21	146,3	150,0	+ 3,7 + 7,4
F ⁻ (NiF ₃)	3x	'160,4'	150,0	- 10,4 - 31,2
Σ		2577,5	2590,0	0,5%= + 12,5

RbNiCrF₆-Typs. Wesentliches Strukturmerkmal gegenüber diesem Typ ist die Aufhebung der statistischen Verteilung von M^{II}und M^{III} zugunsten geordneter Verteilung durch Besetzung spezieller Punktlagen. Gitterkonstanten und angenommene Parameter sind in Tab. 6 aufgeführt. Berechnete und beobachtete Intensitäten sind in guter Übereinstimmung, vgl. Tab. 7.

Wieder haben wir für die angenommenen Parameterwerte der Tab. 6 MAPLE berechnet und mit der Summe der MAPLE-Werte der binären Fluoride verglichen. Auch hier bestätigt die sehr gute Übereinstimmung die Brauchbarkeit der gewählten Parameter und damit die Isotypie.

Bzgl. der Struktureinzelheiten sei auf $CsAgFeF_6[10]$ verwiesen. Es muß jedoch betont werden, daß die Zugehörigkeit von $CsZnAlF_6$ zu diesem Typ überrascht und ungeklärt bleibt, da alle anderen Vertreter dieses Typs <u>wenigstens</u> <u>eine</u> Sorte Metallionen mit <u>partiell besetzter</u> d-Schale haben. Diese Beispiel zeigt, wie schwierig die Deutung der Struktureigenheiten des $CsAgFeF_6$ -Typs sein wird, bei dem ja kantenverknüpfte Oktaederketten entsprechend $[M^{II}F_{4/1}F_{2/2}]$ sowie $[M^{III}F_{4/1}F_{2/2}]$ senkrecht gegeneinander versetzt die dreidimensionale Verknüpfung aufspannen, wobei insbesondere der Winkel F-Ag-F ('Kopf'-'Fuß' im Oktaeder) stark (127°) von 180° abweicht.

Mit diesen Auslenkungen dürfte auch zusammenhängen, daß sich die Gitterkonstanten beim Vergleich verschiedener Fluoride dieses Typs nicht konform ändern. Diese Unregelmäßigkeiten verlangen nach ausführlichen Untersuchungen der Einkristalle, die bislang noch nicht dargestellt werden konnten.

IV. Über $CsNiNiF_6$ und $RbNiNiF_6$

Die schwarzbraunen Fluoride wurden neu dargestellt. Sie entsprechen im Formeltyp Eisenfluoriden wie CsFeFeF₆[11], deren Struktur noch unbekannt ist; \mathbb{NH}_4 FeFeF₆[17] ist nach Einkristalldaten isotyp mit CsAgFeF₆[10].

Tabelle	. 9												
Gitterkc	nstanten,	Molvolu	umina,	Param	eter u	und MAPL	E-Werte	топ Vei	treter	n des C	sAgFeF	6-Typs	
Formel	Struk	turtyp		ಹ	q	υ	MVguat	2MV _{bin}	VMD	MAPLI	^g uat ^{El}	MAPLE _{bin}	
				[A]	[8]	[8]	[cm ²]	[cm ²]	[%]	[kcal/	[] [IoM/	kcal/Mol]	[%]
RbCuVF ₆	RbAgFe	55A1.45 ^E	ها) و ارو	1,883 7	,459	10,15 ₇	78,6	78,9	0,4	2537		2522	0,6
RbCuAlF ₆		:	в) 6	5,860 7	, ⁰⁷	9,98 ₂	73,0	73,7	0,9	2629	•	2654	0,9
CsCuAlF ₆	CsAgAlF	(q 9	(~	7 \$60,7	,134	10,24 ₄	78,1	79,3	1,5	2641	_	2636	0,2
CsZnAlF ₆	:	(q	[7,212 7	1,07 ₈	10,135	77,9	79,5	1,9	2612	A 1	2632	0,6
a) Param	leter von	RbAgFe ₅	5A1.45	⁵ F ₆ [10]		b) P	aramete	r von Cs	AGALF6				
Atom	Funktlag	e X	У	ผ		A	tom Pu	nktlage	×	у	17		
Rb	(4c)	.4774	.25	.1239		C	۵ ۵	(4c)	.4787	. 25	1327		
Ag	(40)	. 3061	.25	.7582		A	50	(4c)	.2835	. 25	7549		
Fe/Al	(4a)	0.	0.	0.		A	Ч	(4a)	0.	0	0		
F(1)	(40)	.0630	• 25	.6554		Ρ	(1)	(4c)	.0356	• 25	6590		
F(2)	(4c)	.4379	.25	. 5029		Εų	(2)	(4c)	.4621	• 25	4928		
F(3)	(Bđ)	.1143	.0216	.1622		ί×ι	(2)	(Bđ)	.1307	.0104	.1439		
F(4)	(P8)	.2274	.0464	.9197		£4	(4)	(8q)	.1981	.0332	. 9044		
CsAgl	AlF ₆ und F	RbAgFe.5	5 ^{A1} .45	F ₆ sin	d mit	CsAgFeF	6[10] i	isotyp (1	Pnma,]	R.G.62,	Z=4)		

Auswartung	e iner	Anfnahma	d C a C	Guinier-de Molff
CsCuAlF. (Cu-K	-Strablune	z)	TTTOM ON- TO FILTON

I.K.1 I.U. ² Lin ² e.m. I.C. I.C. <thi.c.< th=""> <thi.c.< th=""> I.C.</thi.c.<></thi.c.<>	ſ																												-																	
I.K.1 10 ³ cit/cit/cit/cit/cit/cit/cit/cit/cit/cit/		Icalc	0.7	0,0	~ ×	0	1.1.1	6 . 1		0,0	- 0		10.6	0,01	4.0	2.4	0.4	∾ ? ⊃ 0	× ≺ • •	- * - *	20	0.2	~: 0 ¢		0.0	5.0	0.0		0.0	2.2	0,0	2 0 1 M	.9 M	0.0	0.0		0 C 5 kr	.0	3.7	8.1		0.0	0.0	0.1	0.0	< <
I.K.1 10 ⁻ sin ² gals 1.1 17.44 1.1 17.44 1.1 17.44 1.1 17.44 1.1 17.44 1.2 17.44 1.1 17.44 1.1 17.45 1.2 17.44 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.1 17.45 1.2 100.52 1.3 62.64 1.4 100.52 1.5 100.52 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1 100.35 1.1		lobs	+	-		I	18	و	4	10	v (18	84	0	5	ĸ	1	ı	10	1-1	· 1	,	ı	1	1	б	i		r	•	10	с г	ነ ሶን	1	ı	1	, .	\$	ŝ	7	Ţ	- 1	ı	t	•	,
		10 ⁵ .sin ² 0 obs	17.32	C+•11		ı	46.04	46.51	47.10	- 58 80		19.20	64 05	64.48	69.27	69.81	•	1	90.42	93.75	1	•	ı	109.35	ı	111.70			•	128.75	127 64	129.18	140.45	•	•			LL.(CL	155.76	157.40	158 36		;	·	8	•
- H FENEROCOFON DEFENDRALONDANENDERDEDCOMENCEDEDDONLESEN	Auntino Inc. (Dunn)	10 ³ .sin ² Acalc	17.31	22.62	29,10	74.41	46.06	40.00	47.10 57 2.1	58.82	62.54	ко кв	64,08	64.47	69.25	69.78	64 00 84 0/	81.43	90.46	93.79	98.05	57.66 30.501	CZ - 201	109.70	110.58	0/ 101	110.41	122.57	125.42	1/22.12	1:7.62	19.33	140.38	144.68	140.32	152.03	153.01	755-74	155.81	00.101	158.40	164.80	167.60	168.65		00.01
T TOTOLOGOUL ONLOCATONONOLODON TOTOLONOMENTONOMENTEN		-		- ~		(.)	n c		- c	- 0	m	×	~~	~	2	N P	2	in.	4	0	5		1 H	5	, ,	- 7	r へ	~	- (1	: 4	\sim	c., •	~ 4	1 -3	c	.г.	<u>л</u>	in) r	، ر	-	. .	م ارم	<u>_</u>		
	Ŧ	×		\sim	۳.	0	- c			~	5	C	2	-•	C1 -	ο,	- c.		0	∿	0	< ⊂	> ^	-	к) (2 ~	- r.	5	- 0	Э с.	. 0	N°,	- (N C	~ ~	•)	-	0	n c	⊃ n°	÷	٣	•	- Þ.	۱c	÷

	Icalc	0.8	4.0	0		ວ ແ ວັດ			0	0		10	0	12,8	5.0	2.5	n (20	- 0		10	5	0.1	2.7	0.2	0.0	0 0 0 0	ວນ		o c S c	-1 -	3.7	3.6	- (- (0		2 - 2 2 - 2	γ α ο ο	3.6	6.0	0.8	2.2	90 20	х, ic) c	o o o o	0.0	- 0 0 - 0
	1.01.5	1	,	•	1	1-3	2	i o	. 1			20	ۍ.	10	<i>5</i> °.	t,	ł	ł	10	1.1	`,	1	ł	N)	I.	c	1	ı	1	1	5	۴,	`	1 >	۴ ۱ -		•	1	5		57		:-		, ,		•	1	~0
	10 ³ .sin ² eobc	17.17	1	23.12	\$	45.56	46.33	47.36	1	ı		02.20	63.79	64.56	68.65	ND.48	,		75 60	92.94		ł	1	10.42	110.71	110.71	ŧ :		1	1	125.75	21.7.2		141	8.1	•	1	,	154.56		155.76		15.36	4	1	,	t	t	182.50
$u-K_{\alpha 1}-Strahlung)$	10 ³ .sin ^E Acalc	17.18	17.62	23.11	20°22	45.65	45.36	47.37	51.41	57.47	63.25	63.39	63.85	64 . 50	56.75	10.48	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	81 80	92.42	93.00	97.62	98,78	102.83	1015.44	100.45	110.11	115 67		120.29	123.77	125.77	137.61	100°03°	144 10	144.90	68, 641	151.20	152.22	154.65	155.81	155.62		201 - 21 - 12 - 22 - 22 - 22 - 22 - 22 -	0.001	167.66	169,98	173.15	175.33	185.42
CsZnAlF ₆ (C	ГХЧ	101	0 1 1	2 F	- 0	, 0 ; 0 ; 7	112	020	201	210	2 1 1	103	- 0 - 1 - 1	c		ч и ч + С +		10	400	220	203	5 2 3	400	- 1 - 1 - 1	ארי ר ר ע ד	- c		2 2 2	5	131	302	N	2 v C) - 1 ku 1 v	- (1 1 (1	214	124	230	20 S			- r - r - c	- *		یں ج	1 2 2 2	2 2 5	2	2 2 4 0

a) Eigenschaften

Die Proben zersetzen sich schell an der Luft. Dabei entstehen schmutzigbraune, feuchte Zersetzungsprodukte. In Ampullen, unter Argon, sind die Proben bemerkenswert lange unzersetzt aufzubewahren.

b) Röntgenographische Untersuchungen

Pulveraufnahmen nach Guinier-de Wolff (CuK_{α_1} -Strahlung) können orthorhombisch innenzentriert indiziert werden, vgl. Tab. 8. Die Auslöschungen (hkl nur mit h+k+l=2n;:hkO nur mit k=2n, Okl bzw. hOl nur mit k+l bzw. h+l=2n sowie hOO, OkO bzw. OOl nur mit h bzw. k bzw. l=2n) sind mit den Raumgruppen Ima2 (azentrisch) und Imma (zentrisch) vereinbar. Wir wählten willkürlich Imma.

Das Intensitätsprofil der Pulverdaten legte nahe, anzunehmen, daß im Prinzip die Bauprinzipien des CsAgFeF₆-Typs auch hier vorliegen; jedoch müssen wegen der höheren Symmetrie weniger freie Parameter vorhanden sein, vgl. Abb.1.

In Tab. 9 sind die charakteristischen Parameter für unseren Strukturvorschlag für CaNiNiF₆ und RbNiNiF₆ zusammengefaßt. Zunächst wurden die z-Parameter von F(1) und F(2), die die Oktaederketten $[Ni^{II}F_{4/1}F_{2/2}]$ und $[Ni^{III}F_{4/1}F_{2/2}]$ verbrücken, festgelegt (Abb.1). Es wurden Abstände Ni^{II}-F = 1,88 Å und Ni^{II} = 2,03 Å angenommen. Das Alkaliion liegt in Richtung [001] auf einer Geraden mit F(1) und F(2). Es soll sein : A^{I} -F(1)= A^{I} -F(2) mit A^{I} =Cs,Rb. Aus einem Abstand F-F- 2,56 Å folgt für F(3) x=0,1800. Die fehlenden Fluorparameter y und z ergeben sich unter Annahme regulärer Oktaeder. Mit diesen Parametern wurden die Intensitäten berechnet, die im Vergleich zur Annahme von Isotypie zu CsAgFeF₆ nun eine

8 C	r g	ہ ۔ ام	MV guat	Σ MV _{bin} Γ ₂ π3η	۸M ک [م	MAPLEquat ²	E MAPLE _{bin}	
	[A]	[A]	[cm]		[%]	(KCal/IOI)	(KCal/II01)	1
N	7,350 1	10,02 ₅	0.67	80,8 ^{a)}	-2,2	2572,1	2559,8 ^{a)}	.
	7,33,	9,76 ₈	74,9	75,1 ^{a)}	-0,3	2577,6	2572,2 ⁸⁾	0,2

Tabelle 8 .

a) Die Werte für 'NiF $_3$ ' wurden entsprechenden Überlegungen der Dissertation

H. Henkel, Gießen(1968) entnommen.

Аъъ. 1.

Strukturelle Folgen der unterschiedlichen Symmetrie von ${\rm CsAgMF}_6$ und ${\rm CsNiNiF}_6$

Tabelle 9.

Vergl	eich d(er Pu	nk tlageı	pun u	Parameter	von CsAgFeF	6, CsNiNiF	6 und Rl	NiNiF	
CsAgF	eF ₆ , R	G. P.	nma			CsNi	NiF ₆ , R.G.	Imma		
Atom	Punkt.	l age	×	A	12	Aton	I Punktlag	ж	Ą	63
Cs	(4,	c)	.4834	. 25	.1259	Cs	(4e)	•5	. 25	.1535
Ag	(41	()	.2972	• 25	.7570	ΪŅ	(4q)	. 25	. 25	.75
ъ	(4	a)	0.	o.	0.	ĹN	(4a)	0.	•	0.
F(1)	(4	()	.0517	.25	.6632	F(1)	(4e)	•	. 25	.6627
F(2)	(4	()	.4390	.25	.4864	F(2)	(4e)	.5	• 25	.4604
F(3)	(8	d)	.1302	.0076	.1571	F(3)	(16j)	. 1800	. 960	5.1320
F(4)	(8	d)	.2206	.0520	.9137					

RbNiNiF6, R.G. Imma

I

	2	5 .1596	5 .75	•	5 .6424	5 .4604	536 - 1288
	У	.2	.2	°	5		40 V
	×	•5	.25	°	°	°	101
,	Punktlage	(4e)	(44)	(4a)	(4e)	(4e)	(161)
	Atom	Rb	ΪÌ	ΪÌ	F(1)	F(2)	P(3(

so.gute Übereinstimmung von I_0 und I_C zeigt, daß das in der R.G. Imma verfeinerte Modell der realen Kristallstruktur von CsNiNiF₆ und RbNiNiF₆ nahekommt, vgl. Tab. 10. Zur weiteren Überprüfung des gewählten Modells wurden MAPLE-Rechnungen durchgeführt. Ein Vergleich der MAPLE-Werte von CsNiNiF₆ bzw. RbNiNiF₆ mit der Summe der MAPLE-Anteile der binären Komponeneten ergab sehr gute Übereinstimmung (Tab. 8). Die Motive der Koordination von A^INiNiF₆ (A^I=Cs,Rb) einerseits und CsAgFeF₆ andererseits zeigt Tab. 11. Während in CsAgFeF₆ F(2) nur die Oktaeder [Ag^{II}F₆] verbrückt, erlangt F(2) in CsNiNiF₆ bzw. RbNiNiF₆ durch zusätzliche Koordination zum A^I die C.N. = 3. Für A^I wird C.N. = 10 statt C.N. = 9 in CsAgFeF₆. Interatomare Abstände gibt Tab. 12.

SCHLUSSBEMERKUNGEN

Diese neuen Beispiele (RbCuM^{III} F_6 (M^{III} = Al, Fe, V) und CsZnAl F_6 zeigen, daß die Frage, welche Strukturvariante (RbNiCr F_6 -, CsAgAl F_6 - oder CsNiNi F_6 -Typ) auftritt, insbesondere inwieweit die Wahl der zwei- bzw. dreiwertigen Komponenten Einfluß hat, zur Zeit nicht zu beantworten ist. Frühere Überlegungen über den Einfluß der Ionenradienverhältnisse M^{II}/M^{III} bzgl. der Grenze des Auftretens der RbNiCr F_6 -Struktur (1973: R.J.) sind unbrauchbar. So kristallisieren RbCuV F_6 und RbCuAl F_6 orthorhombisch wie RbAg $Fe_{0.55}Al_{0.45}F_6$, nicht aber RbCuF eF_6 , trotz der Abfolge der Ionenradien V³⁺ > Fe³⁺ > Al³⁺.

Tabelle 10

Guinier-de Wolff
nach
Aufnahme
einer
Auswertung

	Fe (Cul	α1-Strahlung)				RbN1NiF ₆ (C	uK _{a1} -Strahlun <i>C</i>)			
M_{12}	1	10 ³ .sin ² 8,)	10 ³ .sin ² 8 _{nbs}	Iobe	Lelr	h k l	10 ³ .sín ² 0 _{calc}	10 ² . sin ² 8 _{obs}	Iobs	Icalc
	1	Carc	840	600	CALC	1 1 0	17.25	17.31	2	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16.89	16.77	-	1.1	- 0	18,52	18.51	5	5.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17.60	17.47	۳	1.0	0 0 2	24.87	25.01	2	0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23.62	\$	ı	1.2	0 2 0	44.14	44.15	Ś	1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		43.93	43.87	4	3.3	1 1 2	48.21	48,22	5	5.9
46.78 46.70 5 4.4 1.2 1.2 646 6247 717 19.1 61.53 61.43 77 8646 6645 6247 717 191 65.66 65.92 51.92 52.71 11.5 61.92 4.0 7500 6700 6703 4.0 22.7 65.75 65.72 12.01 12.02 6923 $10.11.5$ $10.11.5$ $10.11.5$ 70.39 64.74 12 12.00 0723 6826 6839 111.52 $10.11.55$ $10.11.55$ $10.11.55$ $10.11.55$ $10.11.55$ $10.11.55$ 111.12 11256 6856 6956 6956 6956 6956 6956 6956 6956 6956 6956 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 111.55 <td></td> <td>46,29</td> <td>46.22</td> <td>11</td> <td>13.0</td> <td>2 0 0</td> <td>49.19</td> <td>49.23</td> <td>2</td> <td>2.1</td>		46,29	46.22	11	13.0	2 0 0	49.19	49.23	2	2.1
		46.78	46.70	Ŀ	4.4	1 2 1	62.65	62.77	17	19.1
		61.53	61.43	17	18.5	2 1 1	66.44	66.45	20	22.1
64.12 63.36 53.11 10 0 62.25 51.1 15.2 64.83 61.74 12 53.11 10 22.2 69.01 66.23 10 11.5 70.39 61.34 4 2.7 2 0 2 74.07 74.18 5 51.1 70.39 61.34 4 2.7 2 2 74.07 74.18 5 51.1 90.72 4 2.7 2 2 11.12 11.12 11.12 11.12 11.12 11.12 $11.12.53$ 91.39 2 11.2 100.75 100.77 $11.12.53$ $11.12.93$ $11.12.93$ 11.2 $11.12.93$ $11.12.53$ $11.12.53$ $11.12.53$ $11.12.53$ $11.12.53$ $11.25.53$ $11.25.53$ $11.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$ $12.25.53$		63.66	63.58	20	22.2	0 1 3	67.00	67.03	t	2.5
64.83 64.74 12 15.0 0 2 2 0 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10 11.5 5.1 10.6 5.5 110.99 5.1 112.160 112.160 112.160 112.160 5.2 $2.16.60$ 0.6		64.12	63.92	ŝ	3.1	1 0 3	68,26	68.39	ŧ	15.2
		64.83	64.74	12	15.0	0 2 2	69.01	69.23	10	11.5
70.39 70.34 4 2.7 2 2 0 93.55 91.35 93.35 93.35 93.35 2 1.8 90.71 90.72 4 2.6 0 0 4 99.50 - - 0.0 94.45 94.77 1 1 1 1 1 2 106.75 6 6.5 2 116.19 - - 0.0 0		67.55	67.38	6	B.0	2 0 2	74.07	74.18	5	5.1
90.71 90.72 4 2.6 0 4 2.6 9 9 0 - 0 0 - 0 <th0< th=""> 0</th0<>		70.39	70.34	4	2.7	2 2 0	93.33	93.39	2	1.8
94.46 94.42 2 1.0 10.57 104.71 1 1.3 105.52 $ -$		17.06	90.72	4	2.6	0 0 7	99.50	ı	ı	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		94.46	94.42	2	1.0	0 3 1	105.52	ı	1	0.6
108.76 108.75 6 6.5 2 1 116.19 - - 0.0 110.69 - - - 0.0 3 0 1 116.90 - - 0.0 111.15 110.69 - - 0.0 3 0 1 116.90 - - 0.0 111.15 110.99 2 0.0 3 0.1 122.83 122.90 5 3		104.75	104.71	۴	1.3	1 2 3	112.40	112.53	5	4.1
110.89 - 0.0 3 0 1 16.90 - - 0.3 111.15 110.99 2 0.8 2 2 0.8 2 2 0.6 1 1 2 2 0.3 117.14 117.12 3 3 1 7 122.63 122.90 5 3.2 174.16 133.97 3 1 7 2 146.59 1 0.6 134.16 137.12 3 1 0.4 145.63 136.60 1 0.6 0 0 139.65 1 0.4 146.59 166.59 146.59 156.40 1 0		108.76	108.75	ę	6.5	2 1 3	116.19	1	ł	0.6
111.15 110.99 2 0.8 2 2 118.20 - - 0.5 3.2 114.32 - - - 0.6 1 1 4 122.83 122.90 5 3.2 117.14 117.12 3 3.00 1 3.2 1.7 3.10 1.7 0.6 1.1 0.6 3.2 3.00 1 0.6 1.1 0.6		110.89	ş	ı	0.0	3 0 1	116.90	,	ı	0.3
114.32 - 0.6 1 1 4 122.63 122.90 5 3.2 117.14 117.12 3 3.00 1 3 2 136.48 136.50 1 0.6 134.16 133.97 3 1.7 0 2 4 143.65 - - 0.0 0		111.15	110.99	2	0.8	2 2 2	118.20	I	ı	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		114.32	ŧ	ł	0.6	1 1 4	122.83	122.90	5	3.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		117.14	117.12	ħ	3.0	1 3 2	136.48	136.30	f	0.6
138.39 138.60 1 0.4 3 7 146.59 - - 0.0 139.85 139.85 139.85 139.85 2 1.7 2 0 141.69 - - 0.0 141.24 141.06 2 0.3 3 154.72 155.03 7 3.5 151.93 151.73 7 43 0 3 154.72 155.03 7 3.5 151.93 151.03 151.73 7 43 0 3 154.67 10.022 3 1.1 151.93 154.94 2 1.8 0 1 5 166.65 166.67 10 1.4 159.38 158.44 10 8.3 3 0 166.65 166.67 10 1.4 159.58 158.44 10 8.3 3 0 166.65 166.67 10 1.4 159.29 $ 0.1$ 0 10 10 1.4 <td></td> <td>134.16</td> <td>133.97</td> <td>ŕ</td> <td>1.7</td> <td>0 2 4</td> <td>143.63</td> <td>•</td> <td>ł</td> <td>0.0</td>		134.16	133.97	ŕ	1.7	0 2 4	143.63	•	ł	0.0
139.85 139.85 139.85 139.85 1.7 2 0 148.69 - - 0.0 141.24 141.06 2 0.3 3 154.72 155.03 7 3.5 151.53 151.73 7 4.3 0 3 154.72 155.03 7 3.5 151.93 151.73 7 4.3 0 3 154.103 160.92 3 1.1 155.03 154.94 2 1.8 0 1 5 166.50 166.67 10 1.4 158.44 10 8.3 3 0 3 166.65 - - 0.0 158.58 158.44 10 8.3 3 0 166.65 - - 0.0 159.29 - - 0.1 0 1 0 166.65 - - 0.0 159.28 159.28 156.56 - - 0.0 - - 0.0 - 0.0 - - 0.0 0.0 0.0<		138.39	138.60	-	0.4	3 1 2	146.59	ı	ı	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		139.85	139.05	2	1.7	2 0 4	148.69	ı	ı	0.0
151.53 151.53 151.53 151.53 151.53 151.63 155.27 2.2 2.2 2.2 3 155.27 160.92 3 1.1 151.98 154.94 2 1.8 0 1 161.03 166.67 10 1.4 155.08 158.44 10 8.3 3 0 5 166.65 166.67 10 1.4 158.58 158.44 10 8.3 3 0 5 167.76 - - 0.0 158.58 - - 0.1 0 4 0 176.54 176.54 10 1.4 159.29 - - 0.1 0 4 0 176.54 176.54 14 14.5 185.17 185.07 12 12.3 1 4 1 195.06 - - 0.2 187.11 187.04 4 0 196.76 1 - 0.2 4.1		141.24	141.06	5	£•0	2 3 1	154.72	155.03	7	3.5
151.98 2.2 2.2 $3 2 1$ 161.03 160.92 $3 1.1$ 155.03 154.94 2 1.8 0 1 66.50 166.67 10 1.4 158.38 158.44 10 8.3 $3 0 3$ 166.65 166.67 10 1.4 158.58 158.44 10 8.3 $3 0 3$ 166.65 $ 0.0$ 159.29 - - 0.1 0 4 0 176.54 176.61 8 6.6 159.29 - - 0.1 $0 4$ 0 176.54 176.61 8 6.6 175.73 175.67 7 5.2 4 192.03 14 14.5 187.01 187.04 4 3.2 4 0 196.76 $ 0.2$ 187.11 187.04 4 0 196.76 $ 0.2$		151.53	151.73	2	4.3	0 3 3	155.27			2.2
15.03 154.94 2 1.8 0 1 166.50 166.67 10 1.4 158.38 158.44 10 8.3 3 0 3 166.65 166.67 10 9.0 158.58 158.44 10 8.3 3 0 3 166.65 - - 0.0 159.58 158.44 10 8.3 3 0 4 0 176.54 176.61 8 6.6 159.29 - - 0.1 0 4 0 176.54 176.61 8 6.6 175.73 175.67 7 5.2 4 192.82 14 14.5 185.17 185.07 12 12.3 1 4 1 195.06 - - 0.2 187.11 187.04 4 0 196.76 3 4.1 1 4.1		151.98	k.		2-2	3 2 1	161.03	160.92	δ	1.1
158.38 158.44 10 8.3 3 0 3 0 166.65 0.00 158.58 158.44 10 2.2 1 0 5 167.76 $ 0.0$ 159.29 $ 0.1$ 0.4 0 176.54 176.61 8 6.6 175.73 175.67 7 5.2 4 192.82 14 14.5 185.17 185.07 12 12.3 1 4 195.06 $ 0.2$ 187.11 187.04 4 3.2 4 0 196.76 3 4.1		155,03	154.94	2	1.8	0 1 5	166.50	166 67	0	1.4
158.58 2.2 1 0 5 167.76 - - 0 159.29 - - 0.1 0 4 0 176.54 176.61 8 6.6 175.73 175.67 7 5.2 4 192.82 192.93 14 14.5 185.17 187.04 4 3.2 4 0 195.06 - - 0.2 187.11 187.04 4 3.2 4 0 196.76 3 4.1		158.38	158.44	10	8.3	3 0 3	166.65		2	9.0
159.29 - 0.1 0 0 0 176.54 176.61 8 6.6 175.73 175.67 7 5.2 4 192.82 192.93 14 14.5 185.17 187.04 4 3.2 4 0 195.06 - - 0.2 187.11 187.04 4 3.2 4 0 196.76 3 4.1		158.58			2.2	1 0	167.76	r	r	0.0
175.73 175.67 7 5.2 4 192.82 14 14.5 185.17 185.07 12 12.3 1 4 1 195.06 - - 0.2 187.11 187.04 4 3.2 4 0 196.76 3 4.1		159.29	•	ı	0.1	0 7 0	176.54	176.61	ස	6.6
185.17 185.07 12 12.3 1 4 1 195.06 - - 0.2 187.11 187.04 4 3.2 4 0 196.76 196.72 3 4.1		175.73	175.67	7	5.2	2 2 4	192.82	192.93	14	14.5
187.11 187.04 4 3.2 4 0 0 196.76 196.72 3 4.1		185.17	185.07	12	12.3	1 4 1	195.06	r	ı	0.2
		187.11	187.04	4	3.2	7 0 0	196.76	196.72	ĸ,	4.1

Тар.11 .

Motive der Koordination

CsAgFeF ₆ :							
Cs ¹⁺ (4c)	F(1)	1/1	F(3)	4/2	F(4)	4/2	C.N. = 9
Ag ²⁺ (4c)	F(1)	2/2	F(3)	2/1	F(4)	2/1	$\mathbf{C.N.} = 6$
Fe ³⁺ (4a)	F(2)	2/2	F(3)	2/1	F(4)	2/1	C.N. = 6
F(1) (4c)	Ag	2/2	Cs ¹⁺	1/1			C.N. = 3
F(2) (4c)	Fe ³⁺	2/2					C.N. = 2
F(3) (8d)	Fe ³⁺	1/2	Ag	1/2	Cs ¹⁺	2/4	C.N. = 4
F(3) (8d)	Fe ³⁺	1/2	Ag	1/2	Cs ¹⁺	2/4	C.N. = 4
CsNiNiF ₆ :							
Cs ¹⁺ (4e)	F(1)	1/1	F(2)	1/1	F(3)	8/2	C.N. = 10
Ni ²⁺ (4d)	F(1)	2/2	F(3)	4/1			C.N. = 6
Ni ³⁺ (4a)	F(2)	2/2	F(3)	4/1			C.N. = 6
F(1) (4e)	Ni ²⁺	2/2	Cs ¹⁺	1/1			C.N. = 3
F(2) (4e)	Ni ³⁺	2/2	C5 ¹⁺	1/1			C.N. = 3
F(3) (16j)	Ni ³⁺	1/4	Ni ²⁺	1/4	Cs ¹⁺	2/8	C.N. = 4

Ebenso unerklärlich ist, weshalb alle bekannten Fluoride $CsZnM^{III}F_6$ (M^{III} = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rh, Ga, In, Tl) den kubischen RbNiCrF₆-Typ adaptieren, nicht aber $CsZnAlF_6$. Der Vergleich aller bekannten Beispiele für $A^{I}M^{II}M^{III}F_6$

(A^I = Cs, Rb) zeigt also zur Zeit drei miteinander verwandte

550

Tabelle 12 .

Interatomare Abstände im Strukturmodell von

CsNiNiF ₆			RbNiNiF ₆		
Cs-F(1)	3,08	(1x)	Rb-F(1)	2,95	(1x)
-F(2)	3,08	(1x)	-F(2)	2,94	(1x)
-F(3)	3,12	(4x)	-F(3)	3,02	(4x)
-F(3)	3,28	(4x)	-F(3)	3,23	(4x)
$Ni^{II}-F(3)$	2,01	(4x)	$Ni^{II}-F(3)$	2,00	(4x)
-F(1)	2,03	(2 x)	-F(1)	2,03	(4x)
Ni ^{III} -F(3)	1,86	(4 x)	Ni ^{III} -F(3)	1,85	(4x)
-F(2)	1,88	(2x)	-F(2)	1,87	(2x)
F(1)-F(3)	2,76	(4x)	F(1)-F(3)	2,66	(4x)
-F(3)	2,94	(4x)	-F(3)	3,04	(4x)
F(2)-F(3)	2,64	(4x)	F(2)-F(3)	2,63	(4x)
-F(3)	2,65	(4x)	-F(3)	2,63	(4x)
F(3)-F(3)	2,57	(1x)	F(3)-F(3)	2,53	(1x)
-F(3)	2,57	(1x)	-F(3)	2,57	(1x)

CsNiNiF₆ und RbNiNiF₆(in A)

Strukturen:

1. Die RbNiCrF₆-Struktur.

Hierher gehören die meisten der bislang dargestellten Verbindungen, auch CsCu^{II}M^{III}F₆ (M^{III}= Co,Mn,Sc,Rh,Tl). Charakteristisch ist die statistische Verteilung von M^{II}- und M^{III}-Teilchen auf äquivalente Positionen.

2. Der CsNiNiF₆-'Typ'

zeigt dagegen in einer orthorhombischen Verzerrung individuelle Ketten $\frac{1}{\infty} \left[M^{IIF}_{6} \right]$ und $\frac{1}{\infty} \left[M^{III}_{F_6} \right]$. Diese orthorhombische Variante, zu der auch RbNiNiF₆, RbFeFeF₆ sowie CsFeFeF₆gehören, wurde bisher nur durch Pulverdaten belegt. Alle Daten

weisen stark auf die R.G. I mma. Die Zelle leitet sich von der des RbNiCrF₆-Typs ab: $a_{orth.} \simeq b_{orth.} \simeq \frac{a_{kub}/2}{2}$, $c_{orth.} \simeq a_{kub.}$. Wesentliches Merkmal ist die in nur einer Ebene gewinkelte Zick-Zack-Kette entlang [001].

3. Die CsAgFeF₆-Struktur

ist orthorhombisch primitiv. Außer den Silberverbindungen zeigen auch noch jene mit Pd^{2+} oder Cu^{2+} , sowie $CsZnAlF_6$ diese Struktur. Die Oktaeder $M^{II}F_6$ sind hier auffälligerweise gestaucht. Ihre Verknüpfung erfolgt so, daß bei der Zick-Zack-Kette die Winkel M^{II} -F- M^{II} nicht mehr in einer Ebene liegen.

LITERATURVERZEICHNIS

- 1 Teil der Dissertation, T.Fleischer, Gießen 1981.
- 9.Internationales Fluorsymposium in Avignon,
 3.-7.September 1979.
- 3 D.Babel, G.Pausewang u. W.Viebahn, Z.Naturforsch.22b, 1219 (1967)
- 4 R.Hoppe u. R.Jesse, Z.anorg.allg.Chem. 402,29(1973).
- 5 R.Jesse u. R.Hoppe, Z.anorg.allg.Chem. 428,97(1977).
- 6 R.Jesse u. R.Hoppe, Z.anorg.allg.Chem. 428,83(1977).
- 7 R.Jesse u. R.Hoppe, Z.anorg.allg.Chem. 403,143(1974).
- 8 R.Jesse u. R.Hoppe, Z.anorg.allg.Chem. 428,91(1977).
- 9 B.Müller u. R.Hoppe, Z.anorg.allg.Chem. 395,239(1973).
- 10 B.Müller, J. of Fluorine Chem. 17,317-329(1981).
- 11 A.Tressaud, R.de Pape, J.Portier, C.R.Acad.sc.Paris, t.270(1970).
- 12 H.Mattauch, Dissertation, Gießen 1962.

- 552
- 13 A.Simon, J.Appl.Crystallogr.3, 11(1970).
- 14 R.Hoppe, Angew. Chem. 78,52(1966); Int.Ed.5,95(1966).
- 15 R.Hoppe, Angew. Chem. 82,7(1970); Int.Ed.9,25(1970).
- 16 R.Hoppe, Advan. Fluorine Chem.6,387(1970).
- F.Plet, J.L.Fourguet, G.Courbion, G.Ferey, M.Leblanc,R. de Pape, J.Cryst. Crowth 1979,47(5-6)699-702.